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This article discusses various unsolved problems and conjectures that have arisen 
in the study of effect algebras (or D-posets) during the last few years. We also 
include some examples, counterexamples, and results that motivate or partially 
solve these problems. The problems mainly concern sharp and principal elements, 
the existence of infima in Hilbert space effect algebras, tensor products, and 
interval algebras. 

1. INTRODUCTION 

Effect algebras (or D-posets) have recently been introduced as an alge- 
braic structure for investigating the foundations of quantum mechanics (Catta- 
neo and Nisticb, 1985; Dvure~enskij, 1995; Dvure~enskij and Pulmannov~i, 
1994; Foulis and Bennett, 1994; Foulis et  al.,  1994; Giuntini and Greuling, 
1989; Greechie and Foulis, 1995; Greechie e t  aL,  n.d.; Krpka, 1992; K6pka 
and Chovanec, 1994). This framework gives a unification of the operational 
(Busch et  al . ,  1991; Davies, 1976; Holevo, 1982; Kraus, 1983; Ludwig, 1983/ 
1985) and quantum logic (Beltrametti and Cassinelli, 1981; Mackey, 1963; 
Ptfik and PulmannovL 1991; Varadarajan, 1968/1970) approaches to quantum 
mechanics and yields a natural definition of a tensor product, a concept that 
is necessary for the study of combined physical systems (Dvure~enskij and 
Pulmannovfi, 1994; Foulis, 1989). In the last few years, the theory of effect 
algebras has enjoyed a rapid development. Although many questions have 
been answered, this period has also produced various unsolved problems and 
conjectures. Perhaps this is a good time to step back and see what has been 
done and ask what still needs to be accomplished. This article points out 
certain gaps in our knowledge. We shall review some of these unsolved 
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problems and present various examples, counterexamples, and conjectures. 
Moreover, we shall include results that motivate and partially solve these 
problems. 

Many investigators in this field can produce a list of  significant unsolved 
problems. It is unavoidable that the present list is biased toward the author's 
interests and is rather incomplete. In this brief article we concentrate on three 
main themes. In Section 3 we discuss sharp and principal elements in an 
effect algebra. Our main concerns will be the relationships between these 
elements and certain orthoalgebras and orthomodular posets. Section 4 studies 
Hilbert space effect algebras and the existence of the infimum for two effects. 
We also consider the existence of a generalized infimum. In Section 5 we 
inquire into the form of certain tensor products and ask about correspondences 
between the existence of  tensor products and states. Moreover, we discuss 
relationships between interval algebras and the existence of  chain tensor 
products. 

2. BASIC D E F I N I T I O N S  

This section briefly reviews some of the basic definitions that will be 
needed in the sequel. An effect algebra is an algebraic system (P, O, 0, 1), 
where 0 and 1 are distinct elements of  P and @ is a partial binary operation 
on P that satisfies the following conditions: 

(1) If a O b is defined, then b O a is defined and b G a = a G b. 
(2) If a G b and (a • b) G c are defined, then b • c and a ~ (b • 

c) are defined and a G (b • c) = (a • b) • c. 
(3) For every a E P there exists a unique a '  ~ P such that a • a '  = 1. 
(4) If a G 1 is defined, then a = 0. 

We write a <-- b if there exists a c such that a ~ c = b. It can be shown 
that a G b is defined if and only if a -< b'.  Moreover, (P, -<, 0, l) is a 
bounded poser in which a" = a and a < b implies b' <: a '  (Foulis and 
Bennett, 1994; Greechie and Foulis, 1995). If a -< b' ,  we write a ± b. It 
follows from (2) that we can write b = al • "-- • an without parentheses 
whenever it is defined. In this case, if ai = a, i = 1 . . . . .  n, and b is defined, 
we write b = na. An effect algebra P is an orthoalgebra if a _L a implies 
that a = 0 and P is an orthomodular poset if a ± b implies that a • b 
= a v b. We call P distributive if P is lattice ordered and, as a lattice, 
is distributive. 

For effect algebras P, Q a mapping ~: P --> Q is said to be (1) additive 
if a ± b implies qb(a) ± ~(b) and qb(a • b) = qb(a) • ~b(b); (2) a morphism 
if ~) is additive and ~p(l) = 1; (3) a monomorphism if ~ is a morphism 
and ~)(a) ± ~b(b) implies a ± b; (4) an isomorphism if ~b is a surjective 
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monomorphism. Let P, Q, and R be effect algebras. A mapping 13: P x Q 
R is a bimorphism if for every a e P, b E Q, 13(a, .) and 13(., b) are 

additive and 13(1, 1) = I. A bimorphism [3: P X Q --> R is positive if 13(a, 
b) = 0 implies that a = 0 or b = 0 and 13 is strong if 13(', 1) and 13(1, ") 
are monomorphisms. 

A simple example of an effect algebra is [0, 1 ] C R, where a 2_ b if 
and only if a + b -< 1, in which case a • b = a + b. Another example is 
an n-chain, 

Cn = {0, a, 2a . . . . .  na = 1} 

A morphism £b: P ---) [0, 1] is called a state and we denote the set of states 
on P by I)(P). If O(P) 4: d~, we call P stately and if O(P) = ~b, we call P 
stateless. There are examples of stateless effect algebras (Greechie, 1971; 
Gudder and Greechie, n.d.). Also, [0, 1] and C, are stately and have only 
one state. A set of  states S on P is positive if for every a e P, a 4: 0, there 
exists an s e S such that s(a) --/: 0 and S is order determining if s(a) <- s(b) 
for every s e S implies a -< b. If (P, ~3, 0, 1) is an effect algebra and 0 4: 
u ~ P, let 

P[0, u] = {a e P : 0 - < a  < u ]  

Then (P[0, u], G,  0, u) is an effect algebra, where a • b is defined if and 
only i f a O b - <  u, i n w h i c h c a s e a O b  = a @ b .  

Let P, Q, and Tbe  effect algebras and let -r: P x Q ---> Tbe  a bimorphism. 
We call (T, "r) a tensor product of P and Q if (1) for every bimorphism 13: 
P x Q ---> R there exists a morphism qb: T ---> R such that 13 = + o "r; (2) 
every element of T is a finite sum of elements of the form "r(a, b). The tensor 
product is unique to within an isomorphism if it exists. We then write T = 
P ® Q, "r(a, b) = a ® b, and say that P ® Q exists. It can be shown that 
if P and Q admit a bimorphism or if P and Q are stately, then P ® Q exists 
(Dvurerenskij, 1995; Dvurerenskij and Pulmannov~, 1994). However, there 
are effect algebras whose tensor product does not exist (Gudder and Greechie, 
n.d.). We say that P ® Q is positive if • is positive and P ® Q is strong if 
"r is strong. 

Let G be an additively written, partially ordered Abelian group (Fuchs, 
1963; Goodearl, 1986). Let u e G with u > 0 and let 

P = G + [ 0 ,  u] = {g e G : 0 - < g - - - < u }  

Then P can be organized into an effect algebra (P, O, 0, u) by defining a • 
b if and only if a + b -< u, in which case a • b = a + b. In the effect 
algebra P we have a '  = u - a and the effect algebra partial order on P 
coincides with the restriction to P of the partial order on G. An effect algebra 
of the form G÷[0, u] (or isomorphic to an effect algebra of this form) is called 
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an interval effect algebra or, for short, an interval algebra. Notice that [0, 
1] = R÷[0, 1] and C, = Z÷[0, n] are interval algebras. Since an interval 
algebra is stately (Bennett and Foulis, n.d.-b), an effect algebra admits a 
morphism into an interval algebra if and only if it is stately. 

The most important example of an effect algebra is a Hilbert space 
effect algebra. These effect algebras are frequently employed as quantum 
mechanical models and are useful in quantum measurement theory (Busch 
et al., 1991; Davies, 1976; Holevo, 1982; Kraus, 1983; Ludwig, 1983/1985). 
Let H be a complex Hilbert space and let 9~(H) be the set of  all bounded 
self-adjoint operators on H. The positive cone 5P(H) + in 5P(H) is the set of 
all A ~ 5~(H) that satisfy (Ax, x) --> 0 for all x ~ H. We then write A --< B 
if B - A e S°(H) ÷. Letting 0 and 1 be the zero and identity operators, 
respectively, we have 1 e 5°(H) + and (S°(H), +,  0, -<) is a partially ordered 
Abelian group. We call the interval algebra %(H) = b°(H)+[0, 1 ] a Hilbert 
space effect algebra. Notice that if 0 -< h <-- 1, h E R, and A, B ~ %(H), 
then hA + (1 - h)B ~ %(H), so %(H) is a convex subset of  the real vector 
space 9°(H). Any projection is in %(H) and if M is a closed subspace of  H, 
we denote the projection onto M by PM- 

3. S H A R P  AND P R I N C I P A L  E L E M E N T S  

An element a of an effect algebra P is sharp if a ^ a '  = 0. Sharp effects 
correspond to measurements that can be performed with perfect accuracy. It 
can be shown that an effect algebra is an orthoalgebra if and only if all of  
its elements are sharp (Foulis and Bennett, 1994). An element e ~ P is 
principal if a, b ----- e and a ± b imply that a G b < e. If e is principal, it 
is not hard to show that e is sharp. However, the following example shows 
that the converse does not hold in general. 

Example 3.1 (Wright Triangle). Let 

P =  {0, 1, ai, a ' , i  = 1 . . . . .  6} 

where G is determined by 

al • a2 E) a3 = a3 ~) a4 t~) as = as • a 6 ~) al = 1 

Then P is an orthoalgebra, so every element is sharp. However, a~ = a~ • 
a6 = a3 ~) a4 is not principal. Indeed, al, a3 <: a~ and al L a3, but al ~) a3 

t t 

= a2 :~ as. 

It can be shown that an effect algebra is an orthomodular poset if and 
only if every element is principal. Thus, an orthoalgebra that is not an 
orthomodular poset has a sharp element that is not principal and the Wright 
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triangle is such an example. The following theorem is proved in Bennett and 
Foulis (n.d.-a). 

T h e o r e m  3 .1 .  (a) If an effect algebra P is lattice ordered, then a e P is 
sharp if and only if a is principal. (b) The sharp elements of  a distributive 
effect algebra P form a Boolean subalgebra of  P. 

If for every sharp (principal) a, b E P with a _L b we have a • b is 
sharp (principal), then the sharp (principal) elements of P would form a sub- 
effect algebra of  P and hence an orthoalgebra (orthomodular poset) in P. 
However, the next example shows that this does not happen in general. 

E x a m p l e  3 . 2  (Foulis and Greechie). Let P = {0, 1, a, b, c, a ' ,  b ' ,  c'} 
be the effect algebra with the following G table. In this table we do not 
include 0 and t, since they have trivial sums and a dash means that the 
corresponding G is not defined: 

~) a b c a '  b' c '  

a - -  c' b'  1 - -  - -  
b c '  b '  a '  - -  1 

c b '  a '  - -  ~ - -  1 

a '  1 . . . . .  

b '  i 1 . . . .  

C r - -  - -  1 - -  - -  - -  

IIIIIIIII 

We may think of  • as being determined by the equations a ~9 b G c = 1, 
b • b = b'.  Thus, P can be thought of  as the Boolean algebra 2 3 with an 
additional edge so that b G b = b ' .  Now a and c are sharp and principal, 
but b' = a G) c is neither sharp nor principal. Indeed, b ^ b' = b, so b'  is 
not sharp and hence not principal. To see directly that b' is not principal, we 
have a, b --< b',  but a ~) b = c' :~ b'. Since a v b does not exist, P is not 
lattice ordered. However, the sharp and principal elements coincide, so the 
converse of  Theorem 3.1 (a) does not hold. 

We shall see in the next section that the sharp and principal elements 
in %(H) coincide and form an orthomodular lattice (and hence an orthoalgebra) 
in %(H). 

O p e n  P r o b l e m  3.1 .  Characterize the effect algebras whose sharp and 
principal elements coincide. 

O p e n  P r o b l e m  3.2 .  Characterize the effect algebras P whose sharp ele- 
ments form an orthoalgebra in P (that is, if a, b ~ P are sharp and a ± b, 
then a G b is sharp). 
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Open Problem 3.3. Characterize the effect algebras P whose principal 
elements form an orthomodular poser in P (that is, if a, b ~ P are principal 
and a I b, then a G b is principal). 

4. H I L B E R T  SPACE E F F E C T  A L G E B R A S  

Let %(H) be a Hilbert space effect algebra and let ~ (H )  C_ %(/-/) be the 
set of  projections. Kadison (1951) showed that if E, F ~ ~ (H) ,  then E ^ F 
exists and equals PM, where M = El i  A FH. It follows that ~(/-/) forms an 
orthomodular lattice in %(H). The following theorem is well known. 

Theorem 4.1. On %(H), the following statements are equivalent. (1) A 
is sharp, (2) A is principal, (3) A is an extreme point, (4) A is a projection. 

It follows from Theorem 4.1 that the sharp (and hence principal) elements 
of %(H) form an orthomodular lattice in %(/-/). For A, B ~ %(H), we denote 
the projection onto the closure of the range A H  of A by PA and the projection 
onto AH N AH by Pa.8. If dim H >- 2, then %(H) is not a lattice. For example, 
in %(C2), i r a  = diag(l/2, 1/2) and B = diag(3/4, 1/4), then it can be shown 
that A ^ B does not exist (Gudder and Greechie, n.d.). The next result is due 
to Kadison (1951). 

Theorem 4.2. For A, B ~ ~(H),  A ^ B exists in S°(/-/) if and only if A 
and B are comparable (that is, A -< B or B --< A). 

The next problem corresponds to an analogue of  Theorem 4.2 for %(/-/). 
In the sequel, we are referring to the infimum as computed within %(H). 

Open Problem 4.1. Characterize the pairs A, B E %(H) such that A ^ 
B exists. 

Since A v B = (,4' ^ B') '  when either side exists, this would also 
characterize the pairs A, B ~ %(/-/) for which A v B exists. Various partial 
results toward solving Open Problem 4.1 have been obtained. The next two 
theorems solve the problem for the cases dim H = 2, 3 (Gudder and Greechie, 
n.d.; Gudder and Moreland, n.d.). 

Theorem 4.3. Let A, B E %(/-/) with dim H = 2. Then A ^ B exists if 
and only if A and B are comparable or either A or B is a multiple of  a one- 
dimensional projection. 

Theorem 4.4. Let A, B ~ %(H) with dim H = 3 and let P = PA.B- Then 
A ^ B exists if and only if one of  the following cases holds. (1) A and B are 
comparable, (2) dim P = 1, (3) PA = AP, PB = BP, and AP and BP are 
comparable, (4) there exists a projection Pi with dim Pi -> 2, PIA = APt, 
P1B = BPI, dim PIBH, dim PI(A - B)H < 1, and dim PA = 3. 
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It can be shown that the four conditions in Theorem 4.4 are mutually 
independent. The following example illustrates conditions (2)-(4). 

Example 4.1. In %(C 3) we have 

diag(1, 1/2, 0) ^ diag(0, 1, 1/2) = diag(0, 1/2, 0) 

diag(1, 1/2, 1/3) ^ diag(0, 1, 1/2) = diag(0, 1/2, 1/3) 

[li  0 [ ,o  
1/2 1/4 ^ 0 3/8 
1/4 I /2]  0 0 

[1, 0 0 ] [ 0  
0 1/2 1t4 ^ 0 1/3 
0 1/4 1/2 0 0 

0 0 
0 = 3/8 
0 0 

0- 
0 does not exist 
0 

We also have the following partial results that hold for any H (Gudder, 
n.d.-b). As before, P = PA.B- 

Theorem 4.5. For A, B E %(H), if dim P --< 1, then A ^ B exists. 

Theorem 4.6. For A, B E %(H), suppose that AP = PA, BP = PB. Then 
A A B exists if and only if (AP) ^ (BP) exists. Moreover, in this case A A 
B = (AP) ^ (BP). In particular, if AP and BP are comparable, then A ^ B 
is the smaller of AP and BP. 

The next two theorems give partial results when A, B, and H satisfy 
certain restrictions (Gudder, n.d.-b; Gudder and Moreland, n.d.). 

Theorem 4. 7. If H is separable and A and B are commuting effects with 
pure point spectrum, then A ^ B exists if and only i fAP  and BP are comparable. 
Moreover, in this case A ^ B is the smaller of AP and BP. 

Theorem 4.8. If dim H < o~ and A and B are invertible, then A A B 
exists if and only if A and B are comparable. 

The last two theorems motivate the following conjectures. 

Conjecture 4.1. If A and B are commuting effects, then A ^ B exists if 
and only if AP and BP are comparable. 

Conjecture 4.2. If A and B are invertible, then A ^ B exists if and only 
if A and B are comparable. 

For A ~ b°(H) we define IAI = (A2) I/2, where (A2) l/z is the unique 
positive square root of A 2. For A, B E %(H) define the generalized infimum 
A l-l B b y  

A l i B  =½(A + B -  I A - B I )  
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This generalized infinum has been studied by various investigators (Gudder, 
n.d.-b; Kadison, 1951; Lahti and Maczynski, 1995; Topping, 1965). Of  course, 
A 1-1 B always exists as an element of b°(H). However, A r-1 B need not be 
in %(H), because A rl B may not be positive. Nevertheless, for important 
special cases, we do have A I-I B • %(H). For example, if A and B are 
comparable or if A and B commute, then A rq B • %(H). The following 
theorem appears in Gudder (n.d.-b) and generalizes a result in Lahti and 
Maczynski (1995). 

Theorem 4.9. For A, B • %(H), suppose that A 1"1 B • %(H). (a) Then 
A r'l B is a maximal lower bound for A and B in %(H). (b) If A ,x B exists, 
t h e n A ^ B  = A V I B .  

Open Problem 4.2. Characterize the pairs A, B • %(H) such that A VI 
B • %(H). 

5. TENSOR PRODUCTS 

The mapping "r: [0, 1] X [0, 1] ---) [0, 1 ] given by "r(a, b) = ab is the 
only bimorphism from [0, 1] X [0, 1] into [0, 1]. This also holds for the set 
of  rationals Q in [0, 1 ]. It can be shown that the tensor product of  Q with 
itself is (Q, "r). However, it is embarrassing that we do not know the form 
of[O, 1 ] ® [ 0 ,  1]. 

Conjecture 5.1. The tensor product of [0, 1] with itself is not ([0, 1], "r). 

If this conjecture is true, we are led to the following. 

Open Product 5.I. Describe [0, 1] ® [0, I]. 

More generally, let X be a nonempty set and let O, I • [0, 1 ]x be the 
constant 0 and 1 functions. Then ([0, 1] x, G, O, 1) becomes an effect algebra 
when we d e f i n e f O  g i f f (x)  + g(x) -< 1 for all x • X, in which c a s e f O  
g = f + g. The mapping 

"r :  [0, 1] x X [0, 1]v--e [0, I] xxv 

given by 'r(f, g)(x, y) = f(x)g(y) is a bimorphism. However, ([0, 1] xxv, 1") 
cannot be [0, 1] x ® [13, 1] v unless X and Y are finite sets. Even in the finite 
case, the form of [0, 1] x ® [0, 1] v is unknown and the next conjecture is an 
extension of Conjecture 5.1. 

Conjecture 5,2. The tensor product [0, 1] x ® [0, 1] v is not ([0, 1] xxv, "r). 

If this conjecture is true, we are led to the following. 

Open Problem 5.2. Describe [0, 1] x ® [0, 1] v 
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Let Ht ®/-/2 be the usual tensor product of two Hilbert spaces H~, H2. 
For A E %(H), B E %(H), define A ® B E %(H1 ®/-/2) by A ® B( f  ® gj) 
= Af. ® Bgj, where f., gj are bases for Ht, H~, respectively, and extend by 
linearity and continuity. Then r: %(H0 × %(H2) ~ %(H~ ® Hz) given by 
"r(A, B) = A ® B is a bimorphism. Again (%(Hi ®/42), 'r) cannot be %(H0 
® %(H2) unless dim Hi, dim/-/2 < oo and we are led to the following. 

Conjecture 5.3. The tensor product %(H0 ® %(H2) is not (%(Hi ® H:), 'r). 

Open Problem 5.3. Describe %(Hi) ® %(H2). 

In universal algebra the following definition of the tensor product of 
two effect algebras P and Q is natural. If 'r: P x Q --) T is a bimorphism, 
then (T, 'r) is a tensor product of P and Q if for every bimorphism 13: P x 
Q ---> R there exists a unique morphism qb: T --> R such that 13 = + o "r. Let 
us call this Definition 2 and our original one, Definition 1 of a tensor product. 
It is not hard to show that Definition 1 implies Definition 2. 

Open Problem 5.4. Is a tensor product according to Definition 2 unique 
up to an isomorphism? 

Open Problem 5.5. Does Definition 2 imply Definition 1 ? 

An effect algebra P is a tensor chain algebra if P ® Cn exists for all 
n q~ N. The following result is proved in Gudder (n.d.-a). 

Theorem 5.1. For an effect algebra P, the following statements are 
equivalent. (a) P is a tensor chain algebra, (b) P ® C, exists for all n E L 
where I C_ N is infinite, (c) P is stately, (d) P ® [0, 1] exists, (e) P admits 
a morphism into an interval algebra. 

It follows from Theorem 5.1 that if P is stateless, then P ® [0, 1] does 
not exist and P ® C, does not exist for all but finitely many n E N. It can 
be shown that there exist tensor chain algebras that are not interval algebras 
and it follows that there exist stately effect algebras that are not interval 
algebras. As mentioned in Section 1, if P and Q are stately, then P ® Q 
exists. However, the following is unknown. 

Conjecture 5.4. There exist stateless effect algebras P and Q for which 
P ® Q exists. 

In particular, we conjecture that W3.4 ® W3,4 exists, where W3.4 is the 3 
x 4 window (Greechie, 1971). 

An effect algebra P is a doubling tensor chain algebra if P ® Cz" exists 
and is strong for every n E N. An interval algebra G+[0, u] is normal if a 

G + satisfies 2ha ----- 2nu for some n ~ N implies that a -< u. Most of the 
common interval algebras are normal. For example, C,, [0, 1], and %(H) are 
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normal. In fact, if II(G÷[0, u]) is order determining, then G+[0, u] is normal. 
However, the diamond D = {0, a, b, 1} where 2a = 2b = 1 and a Z b is 
an interval algebra (Bennett and Foulis, n.d.-b) that is not normal. The next 
theorem is proved in Gudder (n.d.-a). 

Theorem 5.2. An effect algebra is a doubling tensor chain algebra if and 
only if it is a normal interval algebra. 

Corollary 5.3. If II(P)  is order determining, then P is a normal inter- 
val algebra. 

The converse of Corollary 5.3 does not hold. For example, the nonstan- 
dard unit interval *[0, 1] is a normal interval algebra. However, ~(*[0,  1]) 
contains only one element and this state vanishes on the infinitesimals. This 
example also shows that an interval algebra need not have a positive set 
of states. 

Open Problem 5.6. Does I)(P) positive imply that P is an interval 
algebra? 

An effect algebra P is a positive tensor chain algebra if P ® Cn exists 
and is positive for every n E N. 

Open Problem 5.7. Is every interval algebra a positive tensor chain 
algebra? 

Open Problem 5.8. Is every positive tensor chain algebra an interval 
algebra? 

Let P be an effect algebra and suppose there exists a u E P such that 
2"u = I for some n ~ N. If an effect algebra Q is isomorphic to P[0, u], 
we call P an n-doubling of  Q. Moreover, we call u an n-doubling unit if 2"a 
exists for a ~ P implies that a -< u. If Q is isomorphic to P[0, u], where u 
is an n-doubling unit, we call P a strong n-doubling of  Q. 

If Q = G*[0, u] is an interval algebra, then G+[0, 2nu] is an n-doubling 
of  Q, so every interval algebra admits an n-doubling for every n E N. 
However, the next result shows that an interval algebra need not admit a 
strong n-doubling for every n ~ N (Gudder, n.d.-a). 

Theorem 5.4. An effect algebra Q is a normal interval algebra if and 
only if Q admits a strong n-doubling for every n ~ N. 

Open Problem 5.9. If an effect algebra P admits an n-doubling for every 
n E N, is P necessarily an interval algebra? 
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